A copper wire has a diameter of 1.02 mm and carries a constant current of 1.67 A. If the density of free currents in copper is 8.5 × 1028 m3, calculate the current density and the drift velocity of the electrons.
A copper wire has a diameter of 1.02 mm and carries a constant current of 1.67 A. If the density of free currents in copper is 8.5 \(\times\) 1028 m3, calculate the current density and the drift velocity of the electrons.
Solution:
Given,
diameter , \(d\)=1.02 mm
radius, \(r\) = \(\frac{1.02}{2}\) = 0.51 \(\times\) 10\(^{-3}\) m
current, \(I\) = 1.67 A
number density of electrons, \(n\) = 8.5 \(\times\) 10\(^{28}\) / m\(^3\)
current density, \(J\) = ?
drift velocity, \(v_d\) = ?
Now,
\[\begin{align*}
J&=\frac{I}{A}\\
&=\frac{1.67}{\pi r^2}\\
&=\frac{1.67}{\pi \times (0.51 \times 10^{-3}) ^2}\\
&=2043742.829\\
& \approx 2.04 \times 10^{6} \hspace{0.1cm} Am^{-2}\\
\end{align*}\]
Also,
\[\begin{align*}
J&=v_d e n\\
v_d&=\frac{J}{ne}\\
&=\frac{2.04 \times 10^6}{1.6 \times 10^{-19} \times 8.5 \times 10^{28}}\\
\therefore v_d&=1.5 \times 10^{-4}\hspace{0.1cm} m/s\\
\end{align*}\]
Hence, the current density is \(2.04\times 10^6\) A/m2 and drift velocity is \(1.5 \times 10^{-4}\) m/s.
Comments
Post a Comment